A Novel Image Retrieval Technique based on Gabor Function, Local Tetra Pattern and ASMC
نویسنده
چکیده
CBIR alone won’t give perfect retrieval results due to semantic gap. To overcome the problem of semantic gap in CBIR, more than one Semantic Content Based Image Retrieval techniques are required which is known as Hybrid Classification System. Hence the proposed approach uses multiple machine learning techniques with combination of different classifiers like supervised and unsupervised, soft classifiers, spectral contextual classifiers. Remotely Sensed Image Retrieval System (RSIR) has to identify and retrieve similar images based on query image, to do so we need to extract feature of image in order to compare query Image and database image. The proposed approach is a combination of two Phases. First Phase involves feature extraction by Texture Feature with the help of Gabor Function and Spectral Distribution using Advanced Split and Merge Clustering whereas second Phase identifies the Local Pattern of retrieved images in Phase-I. The performance of the proposed approach is measured in terms of Precision, Recall and f-measure. Statistical analysis of the proposed hybrid approach in Phase-I (Texture and Spectral Distribution) shows that precision, recall and f-measure is get improved, on an average by 19.46%, 8.84%, 14.46% respectively when get compared with CBIR (Texture). Phase-I and Phase –II comparison in term of f-measure is increased up to 96.95%. Hence the hybrid approach gives more accurate result as compare to individual approach General Terms Image Retrieval for dataset of satellite imagery
منابع مشابه
Multiscale Feature Extraction For Content Based Image Retrieval Using Gabor Local Tetra Pattern
In this project the image is retrieved using Local Tetra Pattern (LTrP) for Content Based Image Retrieval (CBIR). It gives the path to retrieve the needed information based on the image content. The earlier version of CBIR was based on Local Binary Pattern, Local Derivative Pattern and Local Ternary Pattern. These methods extract information based on the distribution of edges which are coded us...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملLocal ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval
This paper presents a novel feature extraction algorithm called local ternary co-occurrence patterns (LTCoP) for biomedical image retrieval. The LTCoP encodes the co-occurrence of similar ternary edges which are calculated based on the gray values of center pixel and its surrounding neighbors. Whereas the standard local derivative pattern (LDP) encodes the co-occurrence between the first-order ...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016